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Abstract: Adleman showed that deoxyribonucleic acid (DNA) strands could be employed towards calculating 

solutions to an instance of the Hamiltonian path problem (HPP) [3]. Lipton [5] could solve the Satisfiability problem. 

In this paper, we use that model for developing a new DNA algorithm to solve minimum independent dominating set 

problem (MIDSP). In spite of the NP-hardness of minimum independent dominating set problem (MIDSP) our DNA 

procedures is done in a polynomial time. 
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I. INTRODUCTION 

 

Recently, DNA computing is one of non-silicon based 

computing [4]. DNA computing has two very powerful 

features, Watson-Crick complementarily and massive 

parallelism [6]. It is clear we cannot solve NP problems 

with silicon-based computer, But DNA computing 

provides powerful feature which can solve those problems 

in polynomial steps. Adleman [1] solved Hamiltonian path 

problem of size n. That is the first work for DNA 

computing. Lipton [5] solved the second NP hard problem 

with this algorithm. Some other NP-hard problems that 

have been solved [6-21].  

In this paper, the DNA operations proposed by Adelman 

[1] and Lipton [1] are used to solve minimum independent 

dominating problem. 

For a given Graph ),( EVG  we want to find a subset  

VV '  with minimum cardinality such that for all  
'VVu   there is a  'Vu   for which Evu ),(  . And, 

no two vertices in 'V  are joined by an edge in E  . 

The rest of this paper is organized as follows. In Section 2, 

the Adleman–Lipton model is introduced in detail. Section 

3 we will present a DNA algorithm for solving the 

minimum independent dominating set problem and the 

complexity of the proposed algorithm is described. We 

give conclusions in Section 4. 

 

II. ADLEMAN-LIPTON MODEL 

 

An easy way to comply with the conference paper 

formatting requirements is to use this document as a 

template and simply type your text into it. 
 

Bio-molecular computers work at the molecular level. 

Since biological and mathematical operations have some 

similarities, DNA, the genetic material that encodes the 

living organisms, is stable and predictable in its reactions 

and can be used to encode information for mathematical 

problems [7]. DNA algorithms typically solve problems 

by initially assembling large data sets as input and then 

eliminating undesirable solutions [14].  

 

 

A DNA (deoxyribonucleic acid) is a polymer, which is 

strung together from monomers called 

deoxyribonucleotides [14]. Distinct nucleotides are 

detected only with their bases [13]. 

Those bases are adenine (A), guanine (G), cytosine (C), 

and thymine (T). Two strands of DNA can form (under 

appropriate conditions) a double strand, if the respective 

bases are the Watson–Crick complements of each other, 

i.e., A matches T and C Matches G; also 3’- end matches 

5’- end. For example, strands 5’-ACCGGATGTCA-3’ and 

3’-TGGCCTACAGT-5’ can form a double strand. We 

also call them as the complementary strand of each other 

[12]. 
 

The length of a single DNA strand is the number of 

nucleotides comprising the single strand. Thus, if a single 

DNA strand includes 20 nucleotides, it is called a 20 mer 

[8]. The length of a double strand (where each nucleotide 

is base paired) is counted in the number of base pairs [4]. 

Thus, if we make a double strand from two single strands 

of length 20 mer, then the length of the double strand is 20 

base pairs, also written as 20 bp for more discussion of the 

relevant biological background, refer to [3]. The DNA 

operations proposed by Adleman and Lipton [2] are 

described below. 
 

A (test) tube is a set of molecules of DNA (i.e. a multi-set 

of finite strings over the alphabet {A, C, G, T}). The 

following operations perform on tubes [2]:  
 

(1) Merge (T1, T2): for two given test tubes T1, T2 it 

stores the union 21 TT   in T1 and leaves T2 empty [4]; 

(2) Copy (T1, T2): for a, given test tube T1 it produces a 

test tube T2 with the same contents as T1 [2]; 

(3) Detect (T): Given a test tube T it outputs ‘‘yes’’ if T 

contains at least one strand, otherwise, outputs ‘‘no’’ [2]; 

(4) Separation (T1, X, T2): for a, given test tube T1 and a 

given set of strings X it removes all single strands 

containing a string in X from T1, and produces a test tube 

T2 with the removed strands [3]; 



IARJSET ISSN (Online) 2393-8021 
ISSN (Print) 2394-1588 

 

       International Advanced Research Journal in Science, Engineering and Technology 

ISO 3297:2007 Certified 

Vol. 3, Issue 12, December 2016 
 

Copyright to IARJSET                                  DOI 10.17148/IARJSET.2016.31210                                                     51 

 
Fig. 1. Graph G. 

 

(5) Selection (T1, L, T2): for a, given test tube T1 and a 

given integer L it removes all strands with length L from 

T1, and produces a test tube T2 with the removed strands 

[8]; 

(6) Cleavage (T, 10 ): for a, given test tube T and a 

string of two (specified) symbols 10  it cuts each double 
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(7) Annealing (T): for a, given test tube T it produces all 

feasible double strands in T. The produced double strands 

are still stored in T after Annealing [6]; 

(8) Denaturation (T): for a, given test tube T it dissociates 

each double strand in T into two single strands [7]; 

(9) Discard (T): for a, given test tube T it discards the tube 

T [11]; 

(10) Append (T, Z): for a, given test tube T and a given 

short DNA singled strand Z it appends Z onto the end of 

every strand in the tube T [12]; 

(11) Read (T): for a, given tube T, the operation is used to 

describe a single molecule, which is contained in the tube 

T. Even if T contains many different molecules each 

encoding a different set of bases, the operation can give an 

explicit description of exactly one of them [13]. 

 

Since these eleven manipulations are implemented with a 

constant number of biological steps for DNA strands, we 

assume that the complexity of each manipulation is )O(1

steps [14]. 

 

III. SOLVING MIDSP BY ADLEMAN-LIPTON 

MODEL 

 

Let ),( EVG   be an undirected graph with the set of 

vertices being },,2,1|{ mkAV k    and the set of 

edges being },...,2,1|{ nieE i  [3]. Let |E|=d. In the 

following, the symbols 

),...,2,1,,,2,1(,,,,,#,2,1,0 mjmkCBAYX jjk    

denote distinct DNA singled strands with same length, say 

10-mer. And | |.| |  denotes the length of the DNA singled 

strand. Obviously, the length of the DNA singled strands 

greatly depends on the size of the problem involved to 

distinguish all above symbols and to avoid hairpin 

formation [3].  

 

Tubes P and Q are defined as follows: 

Let  

},n, j,,,Y|kB,A#,#B {j,X,AP k-kn 012111   and  

,n},,|kAB,AB,#{Q kkkk  2110  

We design the following algorithm to solve the minimum 

independent dominating set problem and give the 

corresponding DNA operations as follows: 

 

IV. PRODUCE EACH POSSIBLE SUBSET FROM E 

 

For a graph with n vertices, each possible subset VV '  

of vertices is represented by an n-digit number.  For 

example, for graph 1 we can represent },,{ 3211 AAAV 

as 0000111 and show },,{ 7652 AAAV  as 1110000, in 

which 1 in i-th element shows that the vertices iA  is 

VV ' , and if j=0 it means that this vertex doesn’t exist 

in that subset. 

 

 In this way, we can show all possible subsets with DNA 

strands. We call this the data pool. 

},P);,{#Bon (T) Separati-(

(P);) Discard -(

);#},Ton (P,{A) Separati-(

tion (P);) Denatura-(

g (P);) Annealin-(

,Q);) Merge (P-(

ntmp

tmp

61

51

41

31

21

11
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After these six steps, singled strands in tube P will encode 

all 
n2  subset of V. For example, for the graph in Fig. 1 

with n=7 we have, e.g. the singled strand  

#1000111# 11223344556677 ABABABABABABAB  

Which denotes the subset },,,{ 76511 AAAAV   

corresponding to the number 1110001. This operation can 

be finished in )O(1  steps since each manipulation above 

works in )O(1 steps.  

 

V. ELIMINATING INVALID SUBSETS 

 

In definition of problem, no two vertices in 'V  are joined 

by an edge in E . It means if for each Evu ),( , 'Vu  

and 
'Vv , those subsets are invalid. For example, 

},,,{ 76511 AAAAV   is an invalid subset because there is 

an edge between 61 AA  . 
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End for
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661AB , 111AB  mean both of vertices 1 and 6 are in this 

subset. 

If we have an edge between vertices 1 and 6, then this an 

invalid subset per definition of the problem. 

In this part, we remove subsets which have an edge among 

their vertices. 

In the second part, we will remove those subsets that 

cannot meet this condition, for all  'VVu   there is a  
'Vu   for which Evu ),( . We assume, we have a 

strand which contains 66 0AB . It means 
'6 VV         

then we are looking for those strands which contain  

ii AB 0  and Ei ),6( . 

ii AB 0  means i-th vertices belong to 'V . 

 

End for
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#1000100# 11223344556677 ABABABABABABAB  

This strand is invalid because in the graph we have an 

edge between 6 and 7. This strands contain  

77 0AB And 66 0AB .It is obvious those algorithms will 

terminate in )( 2nO  . 

VI. CALCULATE THE CARDINALITY EACH 

SUBSETS 

 

The cardinality of each subset is equal to number of 

vertices in 'V . To count the number of vertices in 
'V  we 

need to count  niAB ii ,...,2,11  . For each strand contain 

niAB ii ,...,2,11  we will add # to the end of those 

strands. 

End for

)T Merge (P-
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)},TAn (P, {B Separatio-

n to dFor i
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1
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The number of # demonstrate the cardinality of each 

subset. 

We have n iterations, then this algorithm will terminate at 

O(n). 

 

VII. FIND THE SUBSET WITH MAXIMUM 

CARDINALITY 

 

For example, we have 'V  with n vertices, then the strands 

of that subsets contain 
n

##...##
 .  

If we found some strands which contain 
n

##...##
, those 

strands will be our solution. Otherwise we will continue 

with 
1

##...##

n
and 

2

##...##

n
,.. . 
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this algorithm will finish in O(n). 

 

VIII. CONCLUSION  

 

In this paper, we propose a procedure for minimum 

independent dominating set problem in the Adleman– 

Lipton model. The procedure works in )( 2nO steps for 

minimum independent dominating set problem of a 

directed graph with n vertices. All our results in this paper 

are based on a theoretical model. However, the proposed 

procedures can be implemented practically since every 
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DNA manipulation used in this model has been already 

realized in lab level. 
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